На сайт VESTIGATOR

Vestigator - omnia in ut superstes

Регистрация
 

Физические и химические свойства воды
Прочитано 14159 раз
10 Июнь 2014, 19:31:16



Физические и химические свойства.
Открытые источники.

Физические свойства воды.

Вода в нормальных атмосферных условиях сохраняет жидкое агрегатное состояние, тогда как аналогичные водородные соединения являются газами. Это объясняется особыми характеристиками слагающих молекулы атомов и присутствием связей между ними. Атомы водорода присоединены к атому кислорода, образуя угол 104,45°, и эта конфигурация строго сохраняется. Из-за большой разности электроотрицательностей атомов водорода и кислорода электронные облака сильно смещены в сторону кислорода.

По этой причине молекула воды является активным диполем, где кислородная сторона отрицательна, а водородная положительна. В результате молекулы воды притягиваются своими противоположными полюсами и образуют полярные связи, на разрыв которых требуется много энергии.

В составе каждой молекулы ион водорода (протон) не имеет внутренних электронных слоев и обладает малыми размерами, в результате чего он может проникать в электронную оболочку отрицательно поляризованного атома кислорода соседней молекулы, образуя водородную связь с другой молекулой. Каждая молекула связана с четырьмя другими посредством водородных связей — две из них образует атом кислорода и две атомы водорода. Комбинация этих связей между молекулами воды — полярной и водородной, определяет очень высокую температуру её кипения и удельную теплоты парообразования. В результате этих связей в водной среде возникает давление в 15-20 тыс. атмосфер, которое и объясняет причину трудно-сжимаемости воды, так при увеличении атмосферного давления на 1 бар, вода сжимается на 0,00005 доли её начального объёма.

Структуры воды и льда между собой очень похожи. В воде, как и во льду, молекулы стараются расположиться в определённом порядке — образовать структуру, однако тепловое движение этому препятствует. При температуре перехода в твёрдое состояние тепловое движение молекул более не препятствует образованию структуры, и молекулы воды упорядочиваются, в процессе этого объёмы пустот между молекулами увеличиваются, и общая плотность воды падает, что и объясняет причину меньшей плотности воды в фазе льда. При испарении, напротив, рвутся все связи. Разрыв связей требует много энергии, отчего у воды самая большая удельная теплоёмкость среди прочих жидкостей и твёрдых веществ.

Для того чтобы нагреть один литр воды на один градус, требуется затратить 4,1868 кДж энергии. Благодаря этому свойству вода нередко используется как теплоноситель. Однако удельная теплоёмкость воды, в отличие от других веществ непостоянна: при нагреве от 0 до 35 градусов Цельсия её удельная теплоёмкость падает, в то время как других веществ она постоянна при изменении температуры. Помимо большой удельной теплоёмкости, вода также имеет большие значения удельной теплоты плавления (0 °C и 333,55 кДж/кг) и парообразования (2250 кДж/кг).

Вода обладает также высоким поверхностным натяжением среди жидкостей, уступая в этом только ртути. Относительно высокая вязкость воды обусловлена тем, что водородные связи мешают молекулам воды двигаться с разными скоростями.

По сходным причинам вода является хорошим растворителем полярных веществ. Каждая молекула растворяемого вещества окружается молекулами воды, причём положительно заряженные участки молекулы растворяемого вещества притягивают атомы кислорода, а отрицательно заряженные — атомы водорода. Поскольку молекула воды мала по размерам, много молекул воды могут окружить каждую молекулу растворяемого вещества.

Это свойство воды используется живыми существами. В живой клетке и в межклеточном пространстве вступают во взаимодействие растворы различных веществ в воде. Вода необходима для жизни всех без исключения одноклеточных и многоклеточных живых существ на Земле.
   
Вода обладает отрицательным электрическим потенциалом поверхности.

Чистая (не содержащая примесей) вода — хороший изолятор. При нормальных условиях вода слабо диссоциирована и концентрация протонов (точнее, ионов гидроксония H3O+) и гидроксильных ионов HO− составляет 0,1 мкмоль/л. Но поскольку вода — хороший растворитель, в ней практически всегда растворены те или иные соли, то есть в воде присутствуют положительные и отрицательные ионы. Благодаря этому вода проводит электричество. По электропроводности воды можно определить её чистоту.

Вода имеет показатель преломления n=1,33 в оптическом диапазоне. Однако она сильно поглощает инфракрасное излучение, и поэтому водяной пар является основным естественным парниковым газом, отвечающим более чем за 60 % парникового эффекта. Благодаря большому дипольному моменту молекул, вода также поглощает микроволновое излучение, на чём основан принцип действия микроволновой печи.

Основная электрическая характеристика любой среды - диэлектрическая проницаемость - в случае воды демонстрирует необычные для жидкости особенности. Во-первых, она очень велика, для статических электрических полей она равна 81, в то время как для большинства других веществ она не превышает значения 10. Если на любое вещество воздействовать переменным электрическим полем, то диэлектрическая проницаемость перестанет быть постоянной величиной, а зависит от частоты приложенного поля, сильно уменьшаясь для высокочастотных полей. Но диэлектрическая проницаемость воды уменьшается не только в переменных во времени полях, но также и в пространственно переменных полях, т.е. вода является нелокально поляризующейся средой.
 
Большое значение диэлектрической проницаемости объясняется особенностями молекулы H2O. Большая величина статической диэлектрической проницаемости воды ε =81 связана с тем, что вода - сильно полярная жидкость и поэтому обладает мягкой ориентационной степенью свободы (т.е. вращения молекулярных диполей). Каждая молекула воды обладает значительным дипольным моментом. В отсутствие электрического поля диполи ориентированы случайным образом, и суммарное электрическое поле, создаваемое ими, равно нулю.

Если воду поместить в электрическое поле, то диполи начнут переориентироваться так, чтобы ослабить приложенное поле. Такая картина наблюдается и в любой другой полярной жидкости, но вода благодаря большому значению дипольного момента молекул H2O способна очень сильно (в 80 раз) ослабить внешнее поле. Так реагирует вода на внешнее электрическое поле, если приложенное поле постоянно по времени и слабо меняется (или вообще не меняется) в пространстве, заполняемом водой.

В переменных электрических полях диэлектрическая проницаемость воды уменьшается с ростом частоты приложенного поля, достигая значения 4-5 для частот больше 1012 Гц. В 1929 г. П. Дебай предложил описывать реакцию воды на внешнее электрическое поле с помощью комплексной диэлектрической проницаемости:

ε(ω) = ε∞ + (εο - ε∞)/(1 + i ω τ)

где ω - частота внешнего электрического поля, i - мнимая единица, τ - характерное время релаксации, ε∞ ≈ 4÷5 - диэлектрическая проницаемость воды при максимально высокой частоте внешнего поля.

Хотя при выводе своей формулы Дебай использовал довольно искусственную модель структуры воды, это выражение хорошо соответствует экспериментальным данным. Как видим, с ростом частоты внешнего поля диэлектрическая проницаемость резко падает. Молекулярное объяснение этого явления довольно просто. Любые индивидуальные движения молекулы H2O сильно ограничены водородными связями. В переменных электрических полях молекулярные диполи стремятся отследить меняющееся поле. При небольших частотах это им удается. Однако по мере увеличения частоты ориентироваться становится все труднее и труднее. В конце концов диполи вообще перестают реагировать на внешнее поле.

Диэлектрическая проницаемость теперь определяется лишь быстрым атомно-молекулярным механизмом перераспределения электрического заряда, который присущ всем веществам. Такие механизмы действуют в воде и в случае постоянных полей, но их вклад в общую величину диэлектрической проницаемости невелик, всего 4-5 единиц.

Если температура твердого тела повысилась до точки плавления или если жидкость достигла точки кипения, то наступает переходная фаза, как бы пауза, во время которой две фазы (твердая и жидкая или жидкая и газообразная) существуют одновременно. В течение этого промежутка времени, который продолжается до тех пор, пока твердое тело полностью не превратится в жидкость или жидкость в пар, поглощаемое тепло не вызывает никаких изменений в температуре тела. Это тепло называется скрытой теплотой, и его количество у различных веществ неодинаково. Скрытая теплота плавления, а также испарения, у воды необычайно велика; это обстоятельство имеет огромное значение для температуры поверхности земли. Употребляемое нами слово "скрытая" содержит уже некоторый намек на один физический закон, который необходимо подчеркнуть: тепло, поглощаемое водой, никуда не исчезает.

Как известно, одним из основных законов природы является закон сохранения и превращения энергии. В самом общем виде этот закон формулируется так: энергия из одной формы переходит в другою (например, тепловая энергия может превращаться в механическую) не уничтожаясь; в замкнутой системе общее количество энергии остается постоянным.

Этот закон подтверждается и приведенным нами случаем. Когда мы говорим, что вода обладает исключительной теплоемкостью, мы попросту констатируем, что вода как вещество может накопить больше тепловой энергии при меньшем движении атомов и молекул (а это как раз то, что измеряется температурой), чем любое другое широко распространенное вещество. Энергия остается на месте, в воде; она высвободится в виде тепла, когда температура окружающей среды понизится; в результате понижение температуры не будет таким резким.

Вода, замерзая, отдает то же самое количество тепла, которое она поглощает при таянии льда. Мы знаем, что труднее переносить жаркую, но сырую погоду с температурой около 30°, чем сухую и ясную погоду с еще более высокой температурой. Причина этого двоякая: во-первых, наш пот, испаряясь, охлаждает нас, отнимая тепло с поверхности кожи и из окружающего воздуха, но он не может испаряться в насыщенной водяным паром атмосфере сырого дня; во-вторых, при конденсации водяного пара и превращении его в воду выделяется ровно столько тепла, сколько его было затрачено на испарение.
 
У воды самая высокая в мире минералов скрытая теплота испарения и скрытая теплота плавления. Чтобы выпарить воду из чайника, тепла потребуется в пять с половиной раз больше, чем для того, чтобы вскипятить его. Если бы не это ее свойство - даже в жару медленно испаряться, многие озера и реки летом пересыхали бы до дна. Для плавления льда нужно затратить большое количество теплоты. Скрытая теплота плавления (количество тепла, необходимое для расплавления 1 г льда при температуре 0°) составляет 79,4 кал. Вот почему весеннее таяние льда происходит медленно и спасает нас от больших половодий (хоть и не всегда).

Химические свойства воды.

Вода является наиболее распространённым растворителем на планете Земля, во многом определяющим характер земной химии, как науки. Большая часть химии, при её зарождении как науки, начиналась именно как химия водных растворов веществ. Её иногда рассматривают, как амфолит — и кислоту и основание одновременно (катион H+ анион OH−). В отсутствие посторонних веществ в воде одинакова концентрация гидроксид-ионов и ионов водорода (или ионов гидроксония), pKa ≈ ок. 16.
 
Вода химически довольно активное вещество. Сильнополярные молекулы воды сольватируют ионы и молекулы, образуют гидраты и кристаллогидраты. Сольволиз, и в частности гидролиз, происходит в живой и неживой природе, и широко используется в химической промышленности.

Вода реагирует при комнатной температуре:
- с активными металлами (натрий, калий, кальций, барий и др.)
- с галогенами (фтором, хлором) и межгалоидными соединениями
- с солями, образованными слабой кислотой и слабым основанием, вызывая их полный гидролиз
- с ангидридами и галогенангидридами карбоновых и неорганических кислот
- с активными металлорганическими соединениями (диэтилцинк, реактивы Гриньяра, метил натрий и т. д.)
- с карбидами, нитридами, фосфидами, силицидами, гидридами активных металлов (кальция, натрия, лития и др.)
- со многими солями, образуя гидраты
- с боранами, силанами
- с кетенами, недоокисью углерода
- с фторидами благородных газов

Вода реагирует при нагревании:
- с железом, магнием
- с углем, метаном
- с некоторыми алкилгалогенидами

Вода реагирует в присутствии катализатора:
- с амидами, эфирами карбоновых кислот
- с ацетиленом и другими алкинами
- с алкенами
- с нитрилами

Химические свойства воды определяются особенностями ее строения. Вода довольно устойчивое вещество, она начинает разлагаться на водород и кислород при нагревании по крайней мере до 1000°С ( происходит термическая диссоциация) или под действием ультрафиолетового излучения (фотохимическая диссоциация).

Вода относится к химически активным соединениям. Например, реагирует с фтором. Хлор при нагревании или на свету разлагает воду с выделением атомарного кислорода: H2O + Cl2 = HCl + HClO (НСlО = НСl + О)

При обычных условиях она взаимодействует с активными металлами:
2H2O + Ca = Ca(ОН) 2 + H2; 2H2O + 2Na = 2NaOH + H2

Вода вступает в реакцию и со многими неметаллами. Например, при взаимодействии с атомарным кислородом образуется пероксид водорода: H2O + O = H2O2

Многие оксиды реагируют с водой, образуя основания и кислоты: CO2 + H2O = H2CO3; CaO + H2O = Ca(OH)2

При взаимодействии с некоторыми солями образуются кристаллогидраты. При нагревании они теряют кристаллизационную воду: Na2CO3 + 10H2O = Na2CO3*10H2O

Вода также разлагает большинство солей (так называемый гидролиз).
Благородные металлы с водой не реагируют.

Кроме главных ионов, содержание которых в воде достаточно велико, ряд элементов: азот, фосфор, кремний, алюминий, железо, фтор - присутствуют в ней в концентрациях от 0,1 до 10 мг/л. Они называются мезоэлементами (от греч. "мезос" - "средний", "промежуточный").
 
Азот в форме нитратов NO3- попадает в водоёмы с дождевой водой, а в форме аминокислот, мочевины (NH2)2CO и солей аммония NH4+ - при разложении органических остатков.

Фосфор существует в воде в форме гидрофосфатов HPO32- и дигидрофосфатов H2PO3-, образующихся в результате разложения органических остатков.

Кремний является постоянным компонентом химического состава природных вод. Этому способствует в отличие от других компонентов повсеместная распространенность соединений кремния в горных породах, и только малая растворимость последних объясняет малое содержание кремния в воде. Концентрация кремния в природных водах обычно составляет несколько миллиграммов в 1 л. В подземных водах она повышается и часто достигает десятков миллиграммов в 1 л, а в горячих термальных водах - даже сотен. На растворимость кремния, кроме температуры сильно влияет повышение pH раствора.

Сравнительно малое содержание кремния в поверхностных водах, уступающее растворимости диоксида кремния (125 мг/л при 26 °С, 170 мг/л при 38 °С), указывает на наличие в воде процессов уменьшающих ее концентрацию. К ним надо отнести потребление кремния водными организмами, многие из которых, например диатомовые водоросли, строят свой скелет из кремния. Кроме того, кремниевая кислота как более слабая вытесняется из раствора угольной кислотой:
Na4SiO4 + 4CO2 + 4H2O = H4SiO4 + 4NaHCO3

Способствует неустойчивости кремния в растворе и склонность кремниевой кислоты при определенных условиях переходить в гель. В очень мало минерализованных водах кремний составляет существенную, а иногда и преобладающую часть химического состава воды, несмотря на его малое абсолютное содержание. Присутствие кремния в воде является серьезной помехой в технике, так как при продолжительном кипячении воды кремний образует в котлах очень твердую силикатную накипь.

Алюминий поступает в водоёмы в результате действия кислот на глины (каолин): Al2[Si2O5](OH)4 + 6H+ = 2SiO2 + 5H2O + 2Al3+

Основной источник железа - железосодержащие глины. Органические остатки (ниже обозначаются как "С"), находящиеся в контакте с ними, восстанавливают железо до двухвалентного, которое медленно вымывается в форме гидрокарбоната или солей гуминовых кислот: 2Fe2O3 + "C" + 4H2O + 7CO2 = 4Fe(HCO3)2

Когда вода с растворёнными в ней ионами Fe2+ вступает в контакт с воздухом, железо быстро окисляется, образуя коричневый осадок гидроксида Fe(OH)3. Со временем он превращается в болотную руду - бурый железняк (лимонит) FeO(OH). Карельская болотная руда использовалась в XVIII-XIX столетиях для получения железа.

Синеватая плёнка на поверхности воды - это Fe(OH)3, образующийся, когда подземные воды, содержавшие ионы Fe2+, вступают в контакт с воздухом. Ее часто путают с масляной пленкой, однако различить их очень легко: у пленки гидроксида железа рваные края. Если поверхность воды слегка взволновать, гидроксидная пленка, в отличие от масляной, не будет переливаться.

Химический состав природной воды определяет предшествующая ему история, т.е. путь, совершенный водой в процессе своего круговорота. Количество растворенных веществ в такой воде будет зависеть, с одной стороны, от состава тех веществ, с которыми она соприкасалась, с другой - от условий, в которых происходили эти взаимодействия. Влиять на химический состав воды могут следующие факторы: горные породы, почвы, живые организмы, деятельность человека, климат, рельеф, водный режим, растительность, гидрогеологические и гидродинамические условия и пр. Рассмотрим лишь некоторые факторы, влияющие на состав воды.
 
Почвенный раствор и фильтрующиеся через почву атмосферные осадки способны усиливать растворение пород и минералов. Это одно из важнейших свойств почвы, влияющее на формирование состава природных вод, является результатом увеличения концентрации диоксида углерода в почвенном растворе, выделяющегося при дыхании живых организмов и корневой системы в почвах и биохимическом распаде органических остатков. Вследствие этого концентрация CO2 в почвенном воздухе возрастает от 0,033 %, свойственных атмосферному воздуху, до 1 % и более в почвенном воздухе (в тяжелых глинистых почвах концентрация CO2 в почвенном воздухе достигает иногда 5-10 %, придавая тем самым раствору сильное агрессивное действие по отношению к породам).

Другим фактором, усиливающим агрессивное действие фильтрующейся через почву воды, является органическое вещество - почвенный гумус, образующийся в почвах при трансформации растительных остатков. В составе гумуса в качестве активных реагентов прежде всего следует назвать гуминовые и фульвокислоты и более простые соединения, например органические кислоты (лимонная, щавелевая, уксусная, яблочная и др.), амины и т.п. Почвенный раствор, обогащаясь органическими кислотами и CO2, во много раз ускоряет химическое выветривание алюмосиликатов, содержащихся в почвах. Аналогично вода, фильтрующаяся через почву, ускоряет химическое выветривание алюмосиликатов и карбонатных пород, подстилающих почву. Известняк легко образует растворимый (до 1,6 г/л) гидрокарбонат кальция:
CaCO3 + H2O + CO2 ↔ Ca(HCO3)2

Почти на всей европейской части России (кроме Карелии и Мурманской области) известняки, а также доломиты MgCO3•CaCO3 залегают довольно близко к поверхности. Поэтому вода здесь содержит преимущественно гидрокарбонаты кальция и магния. В таких реках, как Волга, Дон, Северная Двина, и основных их притоках гидрокарбонаты кальция и магния составляют от 3/4 до 9/10 всех растворённых солей.
 
Соли попадают в водоёмы и в результате деятельности человека. Так, хлоридами натрия и кальция зимой посыпают дороги, чтобы растапливать лёд. Весной вместе с талой водой хлориды стекают в реки. Треть хлоридов в реках европейской части России привнесена туда человеком. В реках, на которых стоят крупные города, эта доля гораздо больше.
 
Рельеф местности косвенно влияет на состав воды, способствуя вымыванию солей из толщи пород. Глубина эрозионного вреза реки облегчает поступление в реку более минерализованных грунтовых вод нижних горизонтов. Этому же способствуют и другие виды депрессий (речные долины, балки, овраги), улучшающие дренирование водосбора.
 
Климат же, создает общий фон, на котором происходит большинство процессов, влияющих на формирование химическою состава природных вод. Климат прежде всего определяет баланс тепла и влаги, от которого зависит увлажненность местности и объем водного стока, а следовательно, и разбавление или концентрирование природных растворов и возможность растворения веществ или выпадения их в осадок.
 
Огромное влияние на химический состав воды и его изменение с течением времени оказывают источники питания водного объекта и их соотношение. В период таяния снега вода в реках, озерах и водохранилищах имеет более низкую минерализацию, чем в период, когда большая часть питания осуществляется за счет грунтовых и подземных вод. Это обстоятельство используют при регулировании наполнения водохранилищ и сброса из них воды. Как правило, водохранилища наполняют в период весеннего половодья, когда приточная вода имеет меньшую минерализацию.

Записан
... и еще: настоящему индейцу завсегда везде ништяк!


10 Июнь 2014, 19:35:44
#1
Просьба ко всем участникам обсуждения помнить о п. 2 (интро) Правил Форума:

«…2. для продуктивности дискуссий и адресности диалоговой эстетики, во избежание искажения смысла сообщений собеседника и непонимания между участниками обсуждений, обязательным условием в своих ответах, размещаемых на Форуме, является использование функции «цитировать выделенное». По факту обсуждаемая тема должна выглядеть примерно так: «Зимние аварийные укрытия: снежанка»

Записан
Omnes in ut superstes!